- Calculate the following:
- -5 – (3) (-2)
- 7/12 + 2/3 – 1/4
- 14 5/6 – (-7 2/3)
- 3(-2) – 5(-3) – (-2)$^2$
- 3.5 – 0.05(2) +14.2 / 0.2
- $(\sqrt{169} – \sqrt{64}) / 2 \sqrt{25}$
- |5| x |-2| – |-8|
- Evaluate each of the following if x = -3 and y = 2:
- $3x^2 – 2y^3$
- $x^3 – xy – 3$
- Find:
- N if 40% of N is 16
- Solve:
- 7x – 3 – 2x = 2(x+3)
- Simplify the following:
- $(4x – 2y)^2$
- $(3/2x + 3)(1/2x – 3)$
- Solve:
- 2x – 4 < 5x + 8
- Factor the following completely:
- $12a^5 – 18a^4 – 6a^3$
- $3(2x – 1) – 4y (2x – 1)$
- Solve the system below:
$\begin{cases} 3x – 2y = 7\\ 5x + 2y = 1\\ \end{cases}$ - Simplify and state restrictions:
$\frac{5x^2 – 10x}{x^2 – 5x + 6} \div \frac{2x^2 + 6x}{x^2 – 9}$ - Solve for $x{,} x \ne 0{,} x \ne -3$:$\frac{3x – 4}{x} – \frac{x+1}{x+3} = 2$
- Find:
- the length and the slope of the line segment connecting A(3, 5) and B(-3, 4)
- Graph:
- 2x + 5y = 10
- Graph:
- $y = 2x^2$
- Find x, y, z, w:
- Solve the following equations for x or y:
- $2^{x+1}=8 $
- $2x^2 – 3x –
5 = 0 $ - $x/4 = 3/y = 5/30 $
- Find:
- The tenth term of an arithmetic sequence when its first term is 3 and the common difference is 2.
- Find the area of the following figures:
- $x^2 + y^2 = 16$
- AD = 3cm, BC = 5cm, AE = 2cm
- $x^2 + y^2 = 16$
- Graph each of the following:
- $y = -x^2 + 2 $
- $y = 2^x$
- $y = sin(1/2x) + 2, 0\le x \le 2\pi $
- Simplify:
- $\frac{2^{-3} \ x \ 4^{2}}{16^{-1}}$
- $5\sqrt{a^{3 \ 4}\sqrt{a}}$
- log 75 – log 3 + log 4
- $\frac{sin x \ + \ tan x}{sin^2x + cos^2+cos z}$
- Solve:
- |x – 3| = 5
- $2^{2x} – 12(2^x) + 32 = 0 $
- Divide:
- $x^3 + 7x^2 – 11x + 4 by x + 5 $